Converting Decimal Numbers to Binary Numbers

Repeated process:

- 1. Divide by two and write the remainder.
- 2. Continue this process until you get a division answer of zero and a remainder of 1.
- 3. Read the binary from bottom-up.
- 4. Verify that you have 8, 16, 24, or 32 digits. (memory will be allocated in 8-bit sets)

Example:

Change 220 to binary

Change 357 to binary

2 <u>)220</u>		
110	0	1
55	0	
27	1	
13	1	
6	1	
3	0	
1	1	
0	1	

2 <u>) 357</u>	
178	1
89	0
44	1
22	0
11	0
5	1
2	1

1

220 decimal is 11011100 as binary (this is 8 bits ... all good)

357 decimal is 101100101 but this is 9 digits, we need to step it up to 16-bits so, 00000001 01100101 is correct

Try these and verify that you can get the right answer ...

198 → 11000110

295 → 00000001 00100111

87 **→** 01010111